Árboles de bifurcación secuencial al caos en sistemas no lineales con retardo temporal

Árboles de bifurcación secuencial al caos en sistemas no lineales con retardo temporal (Siyuan Xing)

Título original:

Sequential Bifurcation Trees to Chaos in Nonlinear Time-Delay Systems

Contenido del libro:

En este libro se presenta el escenario secuencial global de los árboles de bifurcación de movimientos periódicos al caos en sistemas dinámicos no lineales para una mejor comprensión de los comportamientos globales y las transiciones de movimiento de un movimiento periódico a otro. Se considera como ejemplo un sistema dinámico no lineal unidimensional (1-D), retardado en el tiempo, para mostrar cómo determinar los escenarios secuenciales globales de los árboles de bifurcación de movimientos periódicos al caos.

Se pueden determinar todos los movimientos periódicos estables e inestables en los árboles de bifurcación. Especialmente, los movimientos periódicos inestables en los árboles de bifurcación no pueden obtenerse a partir de los métodos analíticos tradicionales, y dichos movimientos periódicos inestables y el caos pueden obtenerse mediante una estrategia de control específica. Los movimientos periódicos secuenciales en dicho sistema 1-D con retardo temporal se obtienen de forma semianalítica, y la estabilidad y las bifurcaciones correspondientes se determinan mediante análisis de valores propios.

Cada árbol de bifurcación de un movimiento periódico específico al caos se presentan en detalle. La aparición y desaparición del árbol de bifurcación se determinan mediante la bifurcación de nodo de silla de montar, y las soluciones periódicas de período duplicado en cascada se determinan mediante la bifurcación de período duplicado.

A partir de series de Fourier finitas, se obtienen la amplitud armónica y las fases armónicas de los movimientos periódicos en el árbol de bifurcación global para el análisis de frecuencias. Se ofrecen ilustraciones numéricas de movimientos periódicos para movimientos periódicos complejos en árboles de bifurcación globales. Se presenta la rica dinámica del sistema dinámico 1-D, retardado y no lineal.

Estos movimientos periódicos secuenciales globales hacia el caos existen en los sistemas dinámicos no lineales. El análisis frecuencia-amplitud puede utilizarse para reconstruir la expresión analítica de los movimientos periódicos, que puede utilizarse para el control del movimiento en sistemas dinámicos.

Otros datos del libro:

ISBN:9783031796685
Autor:
Editorial:
Idioma:inglés
Encuadernación:Tapa blanda
Año de publicación:2020
Número de páginas:73

Compra:

Actualmente disponible, en stock.

¡Lo compro!

Otros libros del autor:

Árboles de bifurcación secuencial al caos en sistemas no lineales con retardo temporal - Sequential...
En este libro se presenta el escenario secuencial...
Árboles de bifurcación secuencial al caos en sistemas no lineales con retardo temporal - Sequential Bifurcation Trees to Chaos in Nonlinear Time-Delay Systems

Las obras del autor han sido publicadas por las siguientes editoriales:

© Book1 Group - todos los derechos reservados.
El contenido de este sitio no se puede copiar o usar, ni en parte ni en su totalidad, sin el permiso escrito del propietario.
Última modificación: 2024.10.17 08:50 (GMT+2)